
Pyodide: a Python distribution for
the browser

Hood Chatham, Roman Yurchak

About us

Hood

UCLA “NSF Assistant Adjunct
Professor”
 i.e., a post doc

Partially supported by NSF grant #DMS–2002087

Roman Yurchak

Data scientist
Core developer at scikit-learn, Pyodide

@RomanYurchak

Agenda

1. What is Pyodide?

2. Use cases: interactive computing, education, ML

3. Latest developments and outlook

Problem

Python web apps are complicated:

- Frontend / JavaScript code
- Backend / Python code
- Infrastructure: server maintenance or cloud configuration

Goal

What if we could take a Python application, and run the code directly in the browser?

Now possible with WebAssembly!

See Peter Wang’s keynote at PyCon US this morning.

Serverless Python apps for the web?

Python in the browser with
Pyodide: an overview

A binary instruction format for a stack-based virtual machine

- Portable
- Small code size
- Secure
- No standard APIs or syscalls, only an import mechanism

- Implemented in browsers
- Can also be executed in non-web environments

What is WebAssembly?

https://webassembly.org/

C/C++ code

WASM module

HTML page Web browser

The Emscripten build toolchain

https://emscripten.org/

Emscripten is a complete compiler toolchain targeting WebAssembly

+

JS stdlib

Pyodide Components

CPython

micropip
Pure python wheels

from PyPi

WASM +
Javascript stdlib+

+

Python / Javascript
Foreign function interface

...

Pyodide was created by Michael Droettboom at Mozilla

Upstream CPython WASM work

Since 2018 Pyodide was building CPython with many patches.

In 2022 work started on adding WASM build targets in CPython upstream.

Lots of improvements and fixes in Python 3.11.a7+ (cpython#84461)
- Upstreaming of Pyodide patches
- Contributing Emscripten fixes
- More of CPython test suite passes
- Planned Tier 3 support

See Christian Heimes’ keynote at PyConDE

Thanks to Christian Heimes, Brett Cannon, and Ethan Smith.

This will make Pyodide more sustainable.

https://github.com/python/cpython/issues/84461

Related projects

A number of other projects also allow to run Python in the browser:

- Brython: Python 3 javascript implementation + parts of the stdlib

- pypy.js: PyPy compiled to asm.js (no longer maintained)

- RustPython: using the Rust toolchain to build for WASM

For practical usage, compatibility and access to the package ecosystem is critical.

Pure Python packages with micropip

Installed with micropip, if wheels available:

- from PyPI or arbitrary location
- rudimentary dependency resolution

Some packages need to be patched,
- with ongoing effort to upstream fixes

Examples

See PEP 427:

-py3-none-any.whl -> pure Python wheel

-cp38-manylinux1_x86_64.whl -> Linux wheel (not compatible with pyodide)

https://www.python.org/dev/peps/pep-0427/

Packages with binary extensions

Need to use the Pyodide build system (write a meta.yaml, similar to conda)

- A cross-compilation setup, now building wheels

- Recent support for pypa/build for build isolation

- Additional post-processing: unvendoring tests as separate packages

- Still a long way to a wheel standard for WASM, before their support on PyPI
- No stable ABI in Emscripten

Wheels distributed via JSDelivr.

There are also other more conda / conda-forge oriented initiatives (emscripten-forge).

Supported Python packages in Pyodide

(pytest, ..)

120 packages in pyodide/packages/ …

Foreign function interface (JS ↔ Python)
Using Python from Javascript

A Python object in global scope can be
accessed from Javascript

For more details: pyodide.org/en/stable/usage/type-conversions.html

let sum = pyodide.globals.get("sum");

sum([1, 3, 4]); // 8

from js import setTimeout

setTimeout(f, 100)

- Automatic conversion of simple native types (float, str, int, …,)
- Other types are proxied

Using Javascript from Python

A Javascript object in global scope
can be imported into Python

https://pyodide.org/en/stable/usage/type-conversions.html

const functools =

pyodide.pyimport("functools");

functools.reduce((x,y) => x*y, [1,2,3,4]);

const math = pyodide.pyimport("math");

math.lcm(4, 6, 13); # Least common multiple

Example: Python utils from JavaScript

const random = pyodide.pyimport("random");

random.sample(

 pyodide.toPy(['red', 'blue']),

 5

).toJs();

Example: random.sample
From Javascript:

Example: random.sample
A Python random.sample wrapper for use from Javascript:

def random_sample_from_js(space, n):

 from pyodide import to_js

 from random import sample

 space_py = space.to_py()

 result = sample(space_py, n)

 return to_js(result)

from js import fetch

response = await fetch("example.com", method="GET",

redirect="error")

text = await response.text()

Examples: fetch API from Python

function editBuffer(x, idx){

 let buf = x.getBuffer();

 buf.data[idx] *= 3;

 buf.release();

}

pyodide.runPython(`

 from js import editBuffer

 ar = np.arange(10, dtype=np.float)

 editBuffer(ar, 3)

`);

Examples: Buffers
Can use numpy arrays with Javascript ndarray libraries (e.g., video processing)

Emscripten Host Environment
Features

- 32 bit architecture
- (Javascript) Memory Filesystem
- System calls implemented in Javascript

Limitations

- No subprocess, no threading (theoretically possible, significant work needed)
- No sockets
- Not all syscalls are implemented in Emscripten
- Difficult to use traditional I/O

Some use cases
Interactive computing
Education
Machine learning

Client-only Architecture

Application with a backend server Application with only static files

Client-only Web Apps in Python

Usability
No Python installation needed, just open a web page

Scalability
Serving static files is easy, scales well to a large number of users

- No need for extensive backend infrastructure / maintenance effort

Packages only downloaded once, then cached in the browser

Privacy
All calculations run locally, no data sent to a remote server

- Good for users
- Good for developers (less GDPR related paperwork)

See: “Analyzing sensitive data at scale doesn’t have to be a headache” by Tambe
Tabitha

www.socialfinance.org.uk/blogs/analysing-sensitive-data-scale-doesn’t-have-be-headache

Client-only Web Apps in Python

https://www.socialfinance.org.uk/blogs/analysing-sensitive-data-scale-doesn%E2%80%99t-have-be-headache

A growing ecosystem

- Pyscript: a framework to create rich Python applications in the browser using HTML
pyscript.net/ (see Peter Wang’s keynote at PyCon US)

- Irydium: Interactive documents and data visualizations in markdown irydium.dev

- React + Pyodide: using a JavaScript framework in Python
blog.pyodide.org/posts/react-in-python-with-pyodide/

- wc-code: running Python code snippets with HTML tags
github.com/vanillawc/wc-code

https://pyscript.net/
https://irydium.dev/
https://blog.pyodide.org/posts/react-in-python-with-pyodide/
https://github.com/vanillawc/wc-code

Notebook environments

jupyterlite.readthedocs.io

Many other interactive computing projects:

- Starboard Notebook: The shareable in-browser
notebook starboard.gg/#python

- Basthon: Static version of Jupyter notebook
notebook.basthon.fr (in French)

https://jupyterlite.readthedocs.io/
https://starboard.gg/#python
https://notebook.basthon.fr/

Pyodide in Education
Python is taught in French high schools:

- Python installation is time consuming and teachers can’t spend time on it

- A centralized server infrastructure to run code is costly

A notebook solution (Basthon) backed by
Pyodide is now used in as part of the Capytale
project.

100k+ weekly users with a minimal effort of
serving static files.

Many other efforts for education and research:
futurecoder, EngineeringPaper.xyz, ..

Classical workflow
1. Train the machine learning (ML) model
2. Serialize model to disk
3. Develop a web service
4. Package in a container (Docker)
5. Deploy on a server

Tools for ML inference with WASM support

Deploying machine learning models

Fast, small model size but restricted to predefined operators...

Use pickle?
Unsafe, brittle to environment changes but portable and non opaque

Steps
1. Create an environment with the same Python and dependencies versions

as Pyodide

2. Pickle the model (pickle.dumps) and deserialize it in pyodide (pickle.loads)

3. Run inference from JS

Training can also happen directly on the client.

Deploying scikit-learn models in Pyodide

A React app to train scikit-learn classifiers online, using synthetic datasets by Stefano Meschiari

Classifier decision boundary example

www.stefanom.io/sklearn-classifiers-playground

https://www.stefanom.io/sklearn-classifiers-playground/

Latest developments and
outlook

Packaging SciPy and Fortran
There is no working Fortran compiler with based on LLVM with WASM support

 – WIP: LFortran, Flang classic, Flang
 – gcc plugin ⇒ LLVM IR from gfortran

Instead we use f2c…
“f2c is a program to convert Fortran 77 to C code, developed at Bell Laboratories”

but f2c also doesn’t work for us

We use a mixture of automatic Fortran source transformations, automatic C
transformations, and manual patches... =(

https://en.wikipedia.org/wiki/Transcompiler
https://en.wikipedia.org/wiki/C_(programming_language)

- Python C extensions define Python functions in C, but with the wrong number of
arguments.

- The C standard says this is undefined behavior,
 most C compilers generate correct code.

- WASM checks the signature of function pointers when it calls them
 call_indirect (i32, i32) -> i32 function_ptr

Function Pointer Cast Handling

// C extension

PyObject* do_something(PyObject *self)

{

 // ... do stuff

 PY_RETURN_NONE;

}

PyMethodDef do_something_def = {

 "do_something", // the name

 (PyCFunction)do_something, // Function pointer cast!!

 METH_NOARGS, // the calling convention

};

// Called from the interpreter in methodobject.c:

PyObject *result = meth(PyCFunction_GET_SELF(func), NULL);

Function Pointer Cast Handling

- Python C extensions define Python functions in C, but with the wrong number of
arguments.

- The C standard says this is undefined behavior,
 most C compilers generate correct code.

- WASM checks the signature of function pointers when it calls them
 call_indirect (i32, i32) -> i32 function_ptr

- Javascript ⇒ Wasm calls are flexible
so use a trampoline call Wasm ⇒ Javascript ⇒ Wasm

- upstreamed into Python 3.11! cpython#32189

Detailed discussion: blog.pyodide.org/posts/function-pointer-cast-handling/

Function Pointer Cast Handling

https://github.com/python/cpython/pull/32189
https://blog.pyodide.org/posts/function-pointer-cast-handling/

Getting http.client to work (WIP)
Sockets don’t work in WASM VM ⇒ use fetch

Problem

Synchronous C / Python APIs wish to consume asynchronous browser APIs.

Solution
- Run Pyodide in a Worker (browser version of processes),
- send requests to a separate thread,
- use Atomics API to block for thread to complete

WIP: github.com/hoodmane/synclink

Example
- Can use Chrome FileSystem API to mount a native directory into Pyodide
- Apps can write directly into user’s host OS file system

github.com/hoodmane/worker-pyodide-console/tree/nativefs

https://github.com/hoodmane/synclink
https://github.com/hoodmane/worker-pyodide-console/tree/nativefs

Asyncio in the browser
Each browser thread comes with an event loop.

Pyodide has WebLoop
- Schedule tasks on the browser event loop

Limitations
- We cannot block ⇒ asyncio.run_until_complete cannot work as expected
- No control over event loop lifecycle

Benefits
- No need to control event loop lifecycle!

Download sizes for packages

Download size is not an optimisation

criterion in the Python ecosystem (unlike

for JS)

Historically large packages (e.g. scipy)

Inclusions of test files in the main package

(e.g. import numpy.tests)

Example of loading pandas

Make Python package sizes web friendly

Break large packages in smaller parts

- Makes it difficult to reuse existing dependency lists

Use a bundler tool

- Detect modules used at runtime, create a separate archive with those

- The code to run needs be known in advance

Dynamic imports

- Fetch Python modules as they are loaded
- performance concerns

Wait for the average web page size to grow larger (1 MB in 2012, 2 MB in 2018) ...

- Keep up with Emscripten releases (fixes, size and performance improvements)
- Upstream package patches (Numpy)
- Support for synchronous I/O and web workers
- Reimplement some stdlib modules (e.g. http.client) with Web APIs
- Reduce size of packages
- Improve sustainability of the package build system
- Threading?

Also much exciting work to be done upstream and downstream

Roadmap

New contributors are very welcome!
Many low hanging fruit in the Python for WASM ecosystem.

pyodide.org/en/stable/project/roadmap.html

https://pyodide.org/en/stable/project/roadmap.html

Acknowledgement

Michael Droettboom

Gyeongjae Choi

Joe Marshal

Henry Schreiner

Dexter Chua

Emscripten

 Alon Zakai and Sam Clegg

CPython

 Christian Heimes, Brett Cannon,
Ethan Smith

JupyterLite, Basthon, pyscript, Irydium
maintainers

Iodide team Brendan Colloran, Hamilton
Ulmer, Will Lachance

Python package maintainers for reviewing
patches to improve Pyodide compatibility

Pyodide commiters and users who engaged in
discussions on the issue tracker.

Pyodide sponsors

Pyodide project

Community

https://opencollective.com/pyodide

Thank you!

github.com/pyodide/pyodide

Join us at the PyCon sprints

@pyodide

roberthoodchatham@gmail.com @RomanYurchak

https://github.com/iodide-project/pyodide
https://twitter.com/pyodide
https://twitter.com/romanyurchak

